Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2298246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38178601

RESUMO

Probiotics are exploited for adjuvant treatment in IBS, but reliable guidance for selecting the appropriate probiotic to adopt for different forms of IBS is lacking. We aimed to identify markers for recognizing non-constipated (NC) IBS patients that may show significant clinical improvements upon treatment with the probiotic strain Lacticaseibacillus paracasei DG (LDG). To this purpose, we performed a post-hoc analysis of samples collected during a multicenter, double-blind, parallel-group, placebo-controlled trial in which NC-IBS patients were randomized to receive at least 24 billion CFU LDG or placebo capsules b.i.d. for 12 weeks. The primary clinical endpoint was the composite response based on improved abdominal pain and fecal type. The fecal microbiome and serum markers of intestinal (PV1 and zonulin), liver, and kidney functions were investigated. We found that responders (R) in the probiotic arm (25%) differed from non-responders (NR) based on the abundance of 18 bacterial taxa, including the families Coriobacteriaceae, Dorea spp. and Collinsella aerofaciens, which were overrepresented in R patients. These taxa also distinguished R (but not NR) patients from healthy controls. Probiotic intervention significantly reduced the abundance of these bacteria in R, but not in NR. Analogous results emerged for C. aerofaciens from the analysis of data from a previous trial on IBS with the same probiotic. Finally, C. aerofaciens was positively correlated with the plasmalemmal vesicle associated protein-1 (PV-1) and the markers of liver function. In conclusion, LDG is effective on NC-IBS patients with NC-IBS with a greater abundance of potential pathobionts. Among these, C. aerofaciens has emerged as a potential predictor of probiotic efficacy.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Probióticos , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/microbiologia , Resultado do Tratamento , Constipação Intestinal , Probióticos/uso terapêutico , Eubacterium , Método Duplo-Cego , Diarreia/microbiologia
2.
Chembiochem ; 24(21): e202300477, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37490046

RESUMO

Ozonolysis is a useful as well as dangerous reaction for performing alkene cleavage. On the other hand, enzymes are considered a more sustainable and safer alternative. Among them, Caulobacter segnis dioxygenase (CsO2) known so far for its ability to catalyze the coenzyme-free oxidation of vinylguaiacol into vanillin, was selected and its substrate scope evaluated towards diverse natural and synthetic stilbenoids. Under optimized conditions, CsO2 catalyzed the oxidative cleavage of the C=C double bonds of various trans-stilbenes, providing that a hydroxyl moiety was necessary in para-position of the phenyl group (e. g., resveratrol and its derivatives) for the reaction to take place, which was confirmed by modelling studies. The reactions occurred rapidly (0.5-3 h) with high conversions (95-99 %) and without formation of by-products. The resveratrol biotransformation was carried out on 50-mL scale thus confirming the feasibility of the biocatalytic system as a preparative method.


Assuntos
Dioxigenases , Ozônio , Estilbenos , Dioxigenases/metabolismo , Resveratrol , Estilbenos/química
3.
Front Pharmacol ; 13: 857987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016576

RESUMO

Intense physical activity is often associated with undesirable physiological changes, including increased inflammation, transient immunodepression, increased susceptibility to infections, altered intestinal barrier integrity, and increased oxidative stress. Several trials suggested that probiotics supplementation may have beneficial effects on sport-associated gastro-intestinal and immune disorders. Recently, in a placebo-controlled human trial, the AminoAlta™ probiotic formulation (AApf) was demonstrated to increase the absorption of amino acids from pea protein, suggesting that the administration of AApf could overcome the compositional limitations of plant proteins. In this study, human cell line models were used to assess in vitro the potential capacity of AApf to protect from the physiological damages that an intense physical activity may cause. The obtained results revealed that the bacteria in the AApf have the ability to adhere to differentiated Caco-2 epithelial cell layer. In addition, the AApf was shown to reduce the activation of NF-κB in Caco-2 cells under inflammatory stimulation. Notably, this anti-inflammatory activity was enhanced in the presence of partially hydrolyzed plant proteins. The AApf also triggered the expression of cytokines by the THP-1 macrophage model in a dose-dependent manner. In particular, the expression of cytokines IL-1ß, IL-6, and TNF-α was higher than that of the regulatory cytokine IL-10, resembling a cytokine profile characteristic of M1 phenotype, which typically intervene in counteracting bacterial and viral infections. Finally, AApf was shown to reduce transepithelial permeability and increase superoxide dismutase activity in the Caco-2 cell model. In conclusion, this study suggests that the AApf may potentially provide a spectrum of benefits useful to dampen the gastro-intestinal and immune detrimental consequences of an intense physical activity.

4.
AMB Express ; 12(1): 48, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35478304

RESUMO

Optimized recombinant whole cells of E. coli bearing CYP153A6 were employed for catalyzing the hydroxylation of different monoterpene derivatives. In most cases, high selectivity was observed with exclusive hydroxylation of the allylic methyl group bound to the aliphatic ring. In the case of (R)- and (S)-carvone, hydroxylation occurred also on the other allylic methyl group, although to a lesser extent. Biotransformations carried out in fed-batch mode on (S)-limonene and α-terpineol showed that recombinant whole cells retained activity for at least 24 h, allowing for the recovery of 3.25 mg mL-1 of (S)-perillyl alcohol and 5.45 mg mL-1 of 7-hydroxy-α-terpineol, respectively.

5.
Ann Microbiol ; 71(1): 42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690623

RESUMO

PURPOSE: Subclinical vitamin D (vitD) deficiency enhances the predisposition to a myriad of acute and chronic pathologies in many people worldwide. Due to the scarcity of vitD-rich foods, the consumption of supplements or fortified foods can be required to maintain healthy serum levels of 25-hydroxyvitamin D [25(OH)D], and the major circulating form of vitD that is commonly measured in serum to determine the vitD status. Since the vitD absorption seems to resemble that of lipids, improved emulsification in the gut could favor vitD permeation through the enterocyte membrane. Contextually, we hypothesized that a microorganism with cholecalciferol (vitD3)-solubilization properties may potentially result in enhanced serum vitD levels. METHODS AND RESULTS: Six probiotic strains were screened for their ability to create a stable suspension of vitD3 in water: Lacticaseibacillus paracasei DG, L. paracasei LPC-S01, L. paracasei Shirota, L. rhamnosus GG, Limosilactobacillus reuteri DSM 17938, and Lactobacillus acidophilus LA5. The DG strain displayed the strongest vitD3 solubilization ability and, consequently, were used in an in vivo trial where a commercial preparation of vitD3 in refined olive oil was administered by gavage to CD-1 mice with or without the concurrent administration of L. paracasei DG. ELISA measurements showed that the DG strain significantly increased the serum levels of 25(OH) D when administered once a day for 1 week in association with the vitD3 supplement. CONCLUSION: This preliminary pre-clinical study suggests that the combined administration of L. paracasei DG with an oil-based cholecalciferol supplement could contribute to the maintenance of the adequate 25(OH) D serum levels in people at risk of vitD deficiency.

6.
Nutrients ; 12(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881690

RESUMO

Gut microbiota metabolization of dietary choline may promote atherosclerosis through trimethylamine (TMA), which is rapidly absorbed and converted in the liver to proatherogenic trimethylamine-N-oxide (TMAO). The aim of this study was to verify whether TMAO urinary levels may be associated with the fecal relative abundance of specific bacterial taxa and the bacterial choline TMA-lyase gene cutC. The analysis of sequences available in GenBank grouped the cutC gene into two main clusters, cut-Dd and cut-Kp. A quantitative real-time polymerase chain reaction (qPCR) protocol was developed to quantify cutC and was used with DNA isolated from three fecal samples collected weekly over the course of three consecutive weeks from 16 healthy adults. The same DNA was used for 16S rRNA gene profiling. Concomitantly, urine was used to quantify TMAO by ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). All samples were positive for cutC and TMAO. Correlation analysis showed that the cut-Kp gene cluster was significantly associated with Enterobacteriaceae. Linear mixed models revealed that urinary TMAO levels may be predicted by fecal cut-Kp and by 23 operational taxonomic units (OTUs). Most of the OTUs significantly associated with TMAO were also significantly associated with cut-Kp, confirming the possible relationship between these two factors. In conclusion, this preliminary method-development study suggests the existence of a relationship between TMAO excreted in urine, specific fecal bacterial OTUs, and a cutC subgroup ascribable to the choline-TMA conversion enzymes of Enterobacteriaceae.


Assuntos
Proteínas de Bactérias/genética , Enterobacteriaceae/enzimologia , Microbioma Gastrointestinal/genética , Liases/genética , Metilaminas/urina , Adulto , Colina/metabolismo , DNA Bacteriano/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Fezes/microbiologia , Feminino , Humanos , Masculino , Metilaminas/metabolismo , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
7.
FEBS J ; 285(5): 903-914, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29278448

RESUMO

Microbial carboxylesterases are important biocatalysts that selectively hydrolyze an extensive range of esters. Here, we report the biochemical and structural characterization of an atypical carboxylesterase from Bacillus coagulans (BCE), endowed with high enantioselectivity toward different 1,2-O-isopropylideneglycerol (IPG or solketal) esters. BCE efficiently catalyzes the production of enantiopure (S)-IPG, a chiral building block for the synthesis of ß-blockers, glycerophospholipids, and prostaglandins; efficient hydrolysis was observed up to 65 °C. To gain insight into the mechanistic bases of such enantioselectivity, we solved the crystal structures of BCE in apo- and glycerol-bound forms at resolutions of 1.9 and 1.8 Å, respectively. In silico docking studies on the BCE structure confirmed that IPG esters with small acyl chains (≤ C6) were easily accommodated in the active site pocket, indicating that small conformational changes are necessary to accept longer substrates. Furthermore, docking studies suggested that enantioselectivity may be due to an improved stabilization of the tetrahedral reaction intermediate for the S-enantiomer. Contrary to the above functional data implying nonlipolytic functions, BCE displays a lipase-like 3D structure that hosts a "lid" domain capping the main entrance to the active site. In lipases the lid mediates catalysis through interfacial activation, a process that we did not observe for BCE. Overall, we present the functional-structural properties of an atypical carboxyl esterase that has nonlipase-like functions, yet possesses a lipase-like 3D fold. Our data provide original enzymatic information in view of BCE applications as an inexpensive, efficient biocatalyst for the production of enantiopure (S)-IPG. DATABASE: Coordinates and structure factors have been deposited in the Protein Data Bank (www.rcsb.org) under accession numbers 5O7G (apo-BCE) and 5OLU (glycerol-bound BCE).


Assuntos
Bacillus coagulans/enzimologia , Proteínas de Bactérias/isolamento & purificação , Carboxilesterase/isolamento & purificação , Alcenos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carboxilesterase/química , Carboxilesterase/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Glicerol/análogos & derivados , Glicerol/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Domínios Proteicos , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
8.
ChemistryOpen ; 6(5): 668-673, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29046862

RESUMO

The chemoenzymatic flow synthesis of enantiomerically pure captopril, a widely used antihypertensive drug, is accomplished starting from simple, inexpensive, and readily available reagents. The first step is a heterogeneous biocatalyzed regio- and stereoselective oxidation of cheap prochiral 2-methyl-1,3-propandiol, performed in flow using immobilized whole cells of Acetobacter aceti MIM 2000/28, thus avoiding the use of aggressive and environmentally harmful chemical oxidants. The isolation of the highly hydrophilic intermediate (R)-3-hydroxy-2-methylpropanoic acid is achieved in-line by using a catch-and-release strategy. Then, three sequential high-throughput chemical steps lead to the isolation of captopril in only 75 min. In-line quenching and liquid-liquid separation enable breaks in the workflow and other manipulations to be avoided.

9.
Food Microbiol ; 63: 92-100, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28040186

RESUMO

Vinylphenol reductase of Dekkera bruxellensis, the characteristic enzyme liable for "Brett" sensory modification of wine, has been recently recognized to belong to the short chain dehydrogenases/reductases family. Indeed, a preliminary biochemical characterisation has conferred to the purified protein a dual significance acting as superoxide dismutase and as a NADH-dependent reductase. The present study aimed for providing a certain identification of the enzyme by cloning the VPR gene in S. cerevisiae, a species not producing ethyl phenols. Transformed clones of S. cerevisiae resulted capable of expressing a biologically active form of the heterologous protein, proving its role in the conversion of 4-vinyl guaiacol to 4-ethyl guaiacol. A VPR specific protein activity of 9 ± 0.6 mU/mg was found in crude extracts of S. cerevisiae recombinant strain. This result was confirmed in activity trials carried out with the protein purified from transformant cells of S. cerevisiae by a his-tag purification approach; in particular, VPR-enriched fractions showed a specific activity of 1.83 ± 0.03 U/mg at pH 6.0. Furthermore, in agreement with literature, the purified protein behaves like a SOD, with a calculated specific activity of approximatively 3.41 U/mg. The comparative genetic analysis of the partial VPR gene sequences from 17 different D. bruxellesis strains suggested that the observed polymorphism (2.3%) and the allelic heterozygosity state of the gene do not justify the well described strain-dependent character in producing volatile phenols of this species. Actually, no correlation exists between genotype membership of the analysed strains and their capability to release off-flavours. This work adds valuable knowledge to the study of D. bruxellensis wine spoilage and prepare the ground for interesting future industrial applications.


Assuntos
Dekkera/genética , Oxirredutases/genética , Saccharomyces cerevisiae/genética , Clonagem Molecular , Dekkera/enzimologia , Fermentação , Microbiologia de Alimentos , Genótipo , Oxirredutases/química , Oxirredutases/metabolismo , Fenóis/metabolismo , Polimorfismo Genético , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/análise
10.
Steroids ; 116: 1-4, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27665527

RESUMO

A high yielding bioprocess for 11-α hydroxylation of canrenone (1a) using Aspergillus ochraceus ATCC 18500 was developed. The optimization of the biotransformation involved both fermentation (for achieving highly active mycelium of A. ochraceus) and biotransformation with the aim to obtain 11-α hydroxylation with high selectivity and yield. A medium based on sucrose as C-source resulted particularly suitable for conversion of canrenone into the corresponding 11-hydroxy derivative, whereas the use of O2-enriched air and dimethyl sulfoxide (DMSO) as a co-solvent for increasing substrate solubility played a crucial role for obtaining high yields (>95%) of the desired product in high chemical purity starting from 30mM (10.2g/L) of substrate. The structure of the hydroxylated product was confirmed by a combination of two-dimensional NMR proton-proton correlation techniques.


Assuntos
Canrenona/metabolismo , Oxigênio/metabolismo , Aspergillus ochraceus/metabolismo , Biocatálise , Biotransformação , Canrenona/química , Hidroxilação , Oxigenases de Função Mista/metabolismo
11.
Appl Microbiol Biotechnol ; 100(1): 193-201, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26377422

RESUMO

A new NADPH-dependent benzil reductase (KRED1-Pglu) was identified from the genome of the non-conventional yeast Pichia glucozyma CBS 5766 and overexpressed in E. coli. The new protein was characterised and reaction parameters were optimised for the enantioselective reduction of benzil to (S)-benzoin. A thorough study of the substrate range of KRED1-Pglu was conducted; in contrast to most other known ketoreductases, KRED1-Pglu prefers space-demanding substrates, which are often converted with high stereoselectivity. A molecular modelling study was carried out for understanding the structural determinants involved in the stereorecognition experimentally observed and unpredictable on the basis of steric properties of the substrates. As a result, a new useful catalyst was identified, enabling the enantioselective preparation of different aromatic alcohols and hydroxyketones.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Cetonas/metabolismo , Pichia/enzimologia , Pichia/genética , Clonagem Molecular , Coenzimas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , NADP/metabolismo , Estereoisomerismo , Especificidade por Substrato
12.
Mar Biotechnol (NY) ; 17(2): 144-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25266054

RESUMO

A screening among bacterial strains isolated from water-brine interface of the deep hypersaline anoxic basins (DHABs) of the Eastern Mediterranean was carried out for the biocatalytical resolution of racemic propyl ester of anti-2-oxotricyclo[2.2.1.0]heptan-7-carboxylic acid (R,S)-1, a key intermediate for the synthesis of D-cloprostenol. Bacillus horneckiae 15A gave highly stereoselective reduction of (R,S)-1, whereas Halomonas aquamarina 9B enantioselectively hydrolysed (R,S)-1; in both cases, enantiomerically pure unreacted (R)-1 could be easily recovered and purified at molar conversion below 57-58%, showing the potential of DHAB extremophile microbiome and marine-derived enzymes in stereoselective biocatalysis.


Assuntos
Oxirredutases do Álcool/biossíntese , Bacillus/metabolismo , Ácidos Carboxílicos/metabolismo , Esterases/biossíntese , Halomonas/metabolismo , Salinidade , Água do Mar/microbiologia , Biotecnologia/métodos , Catálise , Cloprostenol/metabolismo , Mar Mediterrâneo , Especificidade da Espécie , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...